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ABSTRACT

Objectives: This study aims to investigate the distribution of myeloid-derived suppressor cells (MDSCs) in patients with primary or secondary 
Sjögren’s syndrome (SS) or rheumatoid arthritis (RA) in order to better understand MDSCs significance in the pathogenesis of these autoimmune 
diseases.
Patients and methods: We examined the frequency and calculated absolute counts of overall MDSCs (human leukocyte antigen-antigen D related 
(HLA-DR)low/cluster of differentiation (CD) 33+/CD11b+) and monocytic MDSCs (HLA-DRlow/CD33+/CD11b+/CD14+) subset in peripheral blood samples 
of 23 RA (5 males, 18 females; mean age 57 years; range 41 to 81 years), 25 primary Sjögren’s syndrome (pSS) (1 male, 24 females; mean age 56 years; 
range 32 to 77 years), 17 secondary Sjögren’s syndrome (sSS) (1 male, 16 females; mean age 60 years; range 49 to 73 years) and 23 nonautoimmune 
sicca syndrome (nSS) (23 females; mean age 59 years; range 44 to 92 years) patients by flow cytometric analysis.
Results: Analysis revealed that the frequency of overall MDSCs increased in RA group (46.5±3.4) compared with nSS group (35.6±3.2; p=0.0322). An 
increase of absolute count of overall MDSCs was most evident in both RA (4383±456.8) and sSS groups (3890±495.7) compared with pSS (2447±275.1; 
p=0.0002 and 0.0067) and nSS groups (2025±218.1; p<0.0001 and p=0.0012). The highest absolute count of monocytic MDSCs also manifested in RA 
group (195.4±39.0), compared with all the other groups (86.0±24.9; p=0.0002 [pSS], 128.5±53.4; p=0.0076 [sSS], 83.7±19.0; p=0.0136 [nSS]).
Conclusion: To summarize, we have determined that the most prominent increase of both total and monocytic MDSCs was evident in RA and sSS 
groups, which leads us to believe that MDSCs are associated with rheumatic processes.
Keywords: Flow cytometry; myeloid-derived suppressor cells; rheumatoid arthritis; Sjögren’s syndrome.

In recent years, more attention has been paid 
to myeloid-derived suppressor cells (MDSCs) and 
their importance in cancer and other illnesses. 
Increasing numbers of studies suggest that 
the expansion of these regulatory cells may 
be a common response to various forms of 
inflammation.1

Myeloid-derived suppressor cells are defined as 
heterogeneous cell population and they include 
myeloid progenitor and immature myeloid cells. 
In steady state, MDSCs reside mostly in bone 
marrow, but in presence of various pathological 
conditions, they can expand and be detected in 
peripheral lymphoid and cancerous tissues, blood 
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stream, the spleen and inflammatory sites.2,3 Due 
to their heterogeneity both in morphology and 
function, MDSCs lack one specific marker of 
identification.4

In murine models, researchers characterize 
MDSCs by the expression of granulocyte-
differentiation antigen (Gr-1) and Crohn’s disease 
(CD)11b markers which represent a mixture of 
immature myeloid cells, myeloid progenitor cells, 
monocytes-macrophages, immature granulocytes 
and dendritic cells.5,6 Both murine and human 
MDSCs can be subdivided into more monocytic 
and more granulocytic subtypes. Human MDSCs 
are divided into CD14+ monocytic and CD15+ 
granulocytic subtypes. Both of the subtypes 
express myeloid specific markers CD11b and 
CD33, but lack the expression of human leukocyte 
antigen-antigen D related (HLA-DR) and other 
mature myeloid cells markers.4

A majority of research on MDSCs is performed 
in terms of cancer; however, it is already known 
that MDSCs are involved in various autoimmune 
diseases such as systemic lupus erythematosus,7 
autoimmune type 1 diabetes,8 autoimmune 
hepatitis,9 and also in viral,10 bacterial11 and 
parasitic12 infections, sepsis,13 inflammation14 
or other pathological conditions.15 There are 
limited data available concerning MDSCs in case 
of rheumatoid arthritis (RA) and no data in case 
of Sjögren’s syndrome (SS). Fujii et al.16 showed 
that in a collagen-induced arthritis (CIA) mouse 
model, MDSC lowered the number of T helper 
cells and suppressed the progression of CIA. 
The findings of MDSCs as immune response 
suppressors, functioning directly or indirectly 
through the induction of regulatory T cells, are 
summarized in a review article of Greten et al.4 
Therefore, in this study, we aimed to investigate 
the distribution of MDSCs in patients with 
primary or secondary SS or RA in order to 
better understand MDSCs significance in the 
pathogenesis of these autoimmune diseases.

PATIENTS AND METHODS

Patients who participated in the study were 
recruited from the Rheumatology Centre of 
Vilnius University Hospital Santaros Klinikos 
between September 2014 and December 2016. 
Of the patients included, 25 (1 male, 24 females; 

mean age 56 years; range 32 to 77 years) had 
primary Sjögren’s syndrome (pSS), 17 (1 male, 
16 females; mean age 60 years; range 49 to 73 
years) had secondary Sjögren’s syndrome (sSS) 
due to RA, 23 (5 males, 18 females; mean age 
57 years; range 41 to 81 years) had RA and 23 
(23 females as control group; mean age 59 years; 
range 44 to 92 years) had nonautoimmune 
sicca syndrome (nSS). The diagnoses of pSS 
and sSS were based on the criteria defined 
by the American-European Consensus Group 
criteria for SS.17 RA was diagnosed according 
to 2010 American College of Rheumatology 
(ACR)/European League Against Rheumatism 
(EULAR) criteria for RA.18 None of the patients 
in the control group met the SS classification 
criteria and they were classified as patients with 
nSS. All study participants underwent extensive 
serological evaluation (Table 1). None of the 
patients was on immunosuppressive medications 
at the time of the study. A written informed 
consent was obtained from each subject. The 
study protocol was approved by the Ethics 
Committee for Biomedical Research in Vilnius 
region (2014-05-20, No. 158200-14-733-248). 
The study was conducted in accordance with the 
principles of the Declaration of Helsinki.

Multicolor flow cytometric analysis was 
carried out to determine the frequency of MDSC. 
The following anti-human monoclonal antibodies 
were used in the study: anti-CD14 (phycoerythrin 
[PE]), anti-CD11b (fluorescein isothiocyanate 
[FITC]), anti-CD33 (allophycocyanin [APC]), anti-
HLA-DR (peridinin chlorophyll protein complex 
[PerCP]) (all from BioLegend, San Diego, CA, 
USA). 50 µL of heparinized venous blood was 
stained with appropriate amounts of monoclonal 
antibodies (according to manufacturer’s 
recommendations) in flow cytometric test tubes. 
Cell dyeing protocol was carried out as described 
previously19 and analyzed using FACSCalibur flow 
cytometer (BD Biosciences, San Jose, CA, USA) 
and CELLQuest software (BD Biosciences, San 
Jose, CA, USA). Flow cytometric gating strategy 
of total and monocytic MDSCs (mMDSCs) in one 
patient is presented in Figure 1.

Serum samples of study participants 
were stored at -80°C until analysis. Serum 
anti-Sjögren’s syndrome-related antigen A 
(anti-Ro/SSA) and anti-Sjögren's syndrome-
related antigen B (anti-La/SSB) specific 
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antibody levels were measured by enzyme-
linked immunosorbent assay (ELISA) by use 
of the Anti-SSA (Ro) antibodies enzyme 
immunoassay and Anti-SSB (La) antibodies 
enzyme immunoassay kits (BioSystems S.A., 
Barcelona, Spain) according to manufacturer’s 
recommendations. The absorbance of samples 
was read at 450 nm with microplate reader 
(BioTek Instruments Inc., Winooski, VT, USA). 
The concentration of antibodies present in 
the sample was calculated by interpolating the 
absorbance in four parametric calibration curve 
using Gen5 Microplate Data Collection & Analysis 
Software (BioTek Instruments Inc., Winooski, VT, 
USA). Concentration of anti-Ro/SSA and anti-
La/SSB antibodies in serum sample greater than 
12.5 U/mL was considered positive.

Statistical analysis

Mann-Whitney U test was performed 
to determine the statistical differences using 
GraphPad Prism 6.0 software (GraphPad 
Software, San Diego, CA, USA). The data are 
expressed as mean ± standard error of the mean. 
Correlations were determined with Spearman 
rank correlation tests. P values less than 0.05 
were considered statistically significant.

RESULTS

The median frequency of total MDSCs 
within leukocytes in RA group (46.5±3.4) was 
significantly increased compared to control 
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Figure 1. Flow cytometric analysis of total and monocytic MDSC. Whole blood 
samples were stained with FITC-conjugated anti-CD11b, PerCP-conjugated anti-
HLA-DR, PE-conjugated anti-CD14 and APC-conjugated anti-CD33. Cells were 
gated on leukocytes (R1) according to forward- and side-scatter properties. The 
gating strategy is shown for the HLA-DRlow/neg (R2) and CD11b+/CD33+ (R3) cell 
population (total MDSC) and CD14+ monocytic MDSC in one patient. MDSC: 
Myeloid-derived suppressor cells; FITC: Fluorescein isothiocyanate; PerCP: Peridinin chlorophyll 
protein complex; PE: Phycoerythrin; APC: Allophycocyanin; CD: Cluster of differentiation; HLA-DR: 
Human leukocyte antigen.
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(nSS) group (35.6±3.2; p=0.0322) (Figure 2a). 
However, in case of absolute counts of total 
MDSCs in peripheral blood of study participants, 
more significant differences arose. Although 
the increase of MDSCs in RA group remained 
(4383±456.8; p<0.0001), the absolute count of 
MDSCs increased in sSS group (3890±495.7) 
in comparison to control group (2025±218.1; 
p=0.0012). The absolute counts in both groups 
were also significantly higher compared to 
pSS group (2447±275.1; p=0.0002 and 
p=0.0067, respectively) (Figure 2b).

The highest frequency of mMDSCs was 
observed in RA group (2.1±0.4), but significant 
differences were established only with pSS and 
sSS groups (1.3±0.3; p=0.0141 and 1.2±0.4; 
0.0047, respectively) (Figure 2c). In case of absolute 
count of mMDSCs, the tendency remained the 
same - the highest absolute count was observed 

in RA group (195.4±39.0), but in this respect, 
the increase was significant compared to all 
the other study groups (86.0±24.9; p=0.0002 
[pSS], 128.5±53.4; p=0.0076 [sSS], 83.7±19.0; 
p=0.0136 [nSS]) (Figure 2d).

We also analyzed the distribution of both total 
and mMDSCs in anti-Ro/SSA and anti-La/SSB 
positive patients (Table 1), instead of all study 
participants in pSS group. Even though the 
p values changed slightly (Figure 3a-d), no 
additional significant changes were observed.

In our previous study, we analyzed 
plasmacytoid (pDC) and conventional dendritic 
cells (cDC), cytotoxic T lymphocytes (CTL), 
natural killer (NK) and natural killer T (NKT) cells18 
in peripheral blood of the same study subjects 
as in this study. Consequently, we recalculated 
correlations and established associations 
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Figure 2. The distribution of total and monocytic MDSC in the peripheral blood of RA, pSS, sSS 
and nSS patients. (a, c) Plots indicate frequencies and (b, d) absolute counts of total and monoctic 
MDSC, respectively. Each point represents one patient; horizontal lines represent mean value ± SEM. 
Analysis was performed by Mann-Whitney U test. MDSC: Myeloid-derived suppressor cells; RA: Rheumatoid 
arthritis; pSS: Primary Sjögren’s syndrome; sSS: Secondary Sjögren’s syndrome; nSS: Nonautoimmune sicca syndrome; 
SEM: Standard error of the mean.



Arch Rheumatol58

between MDSCs and other peripheral blood 
cell populations. For this purpose, only the 
same patient data as for MDSC analysis were 
selected and correlations were calculated both in 
frequencies and absolute counts.

We determined that in RA group, the 
frequency of total MDSCs negatively correlated 
with cDC (p=0.0028, r= -0.5948). Both the 
frequency and absolute count of mMDSCs also 
moderately correlated with cDC (p=0.0156, 
r=0.4977 and p=0.0362, r=0.4387, 
respectively), however, the correlations were 
positive. Furthermore, correlations between 
the frequency of total MDSCs and CTL 
were established (“classical” memory cells 
CD8highCD45RA- p=0.0126, r= -0.5115; effector 
memory CTL subtype CD8high/57+/27+/45RA+ 
p=0.0353, r=0.4407).

In sSS group, the frequency and absolute 
count of total MDSCs positively correlated with 
CD8high/57+/27-/45RA- CTL subtype (p=0.0406, 
r=0.5007 and p=0.0267, r=0.5357, respectively), 
while the frequency of mMDSCs negatively 
correlated only with CD8high/57+/27+/45RA+ CTL 
subtype (p=0.0143, r=-0.5816).

In pSS group, both the frequency and absolute 
count of mMDSCs positively correlated with 
CD8high/57-/27-/45RA- CTL subtype (p=0.0425, 
r=0.4088 and 0.0249, r=0.4474, respectively). 
The absolute count of mMDSCs also correlated 
with cDC (p=0.0066, r=0.5285). Correlations 
with NK and NKT cells were not established in all 
of the study groups (RA, pSS and sSS); however, 
in control group, mMDSCs positively correlated 
with NK cells (p=0.0410, r=0.4494).

Figure 3. The distribution of total and monocytic MDSC in the peripheral blood of RA, 
anti-Ro/SSA and anti-La/SSB positive pSS*, sSS and nSS patients. (a, c) Plots indicate frequencies 
and (b, d) absolute counts of total and monocytic MDSC, respectively. Each point represents one 
patient; horizontal lines represent mean value ± SEM. Analysis was performed by Mann-Whitney 
U test. MDSC: Myeloid-derived suppressor cells; RA: Rheumatoid arthritis; anti-Ro/SSA: Anti-Sjögren’s syndrome type A; 
anti-La/SSB: Anti-Sjögren’s syndrome type B; pSS: Primary Sjögren’s syndrome; sSS: Secondary Sjögren’s syndrome; nSS: 
Nonautoimmune sicca syndrome; SEM: Standard error of the mean.
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DISCUSSION

The bone marrow is stimulated to release 
MDSCs into the bloodstream to protect the host 
from harmful excessive immune stimulation in 
case of acute or chronic infection, and to limit 
the formation of an autoimmune response to 
tissue antigens released during injury. The role 
and molecular mechanisms of MDSCs in human 
autoimmune diseases are complicated and still 
unclear. Even though most MDSC studies are 
carried out in murine models,9,20,21 the number 
of human MDSC studies is increasing.22,23 It is 
already known that MDSCs can inhibit functions 
of various T cell populations in many ways. 
Zhu et al.24 demonstrated that in experimental 
autoimmune encephalomyelitis model, mMDSCs 
exhibit strong suppressive effect on activated 
T cells and participate in T cell inhibition by 
producing nitric oxide. Nitric oxide production by 
MDSCs result in nitrosylation of cysteine residues, 
which destabilize messenger ribonucleic acid, thus 
preventing the production of cytokines necessary 
for T cell proliferation.25,26

There is limited research on the distribution 
of MDSCs in peripheral blood of patients with 
autoimmune diseases. In some cases, authors 
report that in animal models, MDSCs decrease the 
severity of autoimmune processes,27,28 while other 
studies show that MDSCs are associated with a 
worse prognosis of the disease.29,30 Jiao et al.23 
determined that in RA patients, circulating MDSC 
population increased significantly compared to 
healthy individuals and these findings coincide 
with our results. Furthermore, they established 
a negative correlation between MDSCs and 
Th17 cells, which confirms the association between 
them. We have also calculated the correlations 
between MDSCs and other peripheral blood cell 
populations and found that these cells correlate 
with cDC and a few subpopulations of CTL, 
which also confirms the association between 
MDSCs and T cells.

For a long time, it has been assumed that 
T cells play the main role in SS pathogenesis; 
however, more recent research claim that B cells 
are not only crucial in SS pathogenesis, but 
are also the main cells participating in the 
development of the disease.31 It is also known 
that there are almost five times more B cells 
than T cells in salivary gland infiltrate of pSS 

patients.32 The fact that B cells play the main 
role in pSS disease may be the reason why we 
observed significantly increased frequency of total 
MDSCs only in RA and a significant increase of 
absolute count of total MDSCs in RA and sSS 
study groups. In pSS group, the absolute count of 
both total and mMDSCs was almost the same as 
in our control group. It is known that anti-Ro/SSA 
and anti-La/SSB autoantibodies are associated 
with a more severe course of the disease: earlier 
onset, decreased salivary flow, more intense 
eye symptoms, worse Schirmer’s test etc.33,34 
However, after narrowing down pSS group to 
only anti-Ro/SSA and anti-La/SSB positive 
patients, results did not change. Nevertheless, we 
have established a correlation between mMDSC 
and cDC, as well as a CTL subtype.

Secondary Sjögren’s syndrome is a common 
manifestation in patients with RA, its prevalence 
varying from 4 to 50%.35 This subgroup of 
patients has distinct clinical, immunological and 
genetic profiles.36 Observation studies indicate 
that RA and sSS have different outcomes and 
patients with sSS have two-fold higher risk of 
non-Hodgkin's lymphoma and higher mortality 
rate.37 In our study, we have determined that 
total MDSCs in sSS increased, compared to pSS 
and nSS and were comparable to RA; however, 
mMDSCs in sSS increased only slightly and were 
comparable to pSS and nSS. It is known that 
granulocytic and monocytic MDSCs have distinct 
molecular properties and distinct gene expression 
profiles but also opposing effects on tumor cells.38 
This can also be assumed in terms of autoimmune 
diseases. Our presumption is that granulocytic 
MDSCs play a more significant role in both RA 
and sSS. Moreover, in this group, we established 
correlations between total and mMDSCs and 
different CTL subpopulations.

One of the downfalls of our study is that we 
only measured the distribution of MDSCs and 
mMDSCs in RA, pSS and sSS study groups. We 
observed increased frequency of total MDSCs 
in all study groups compared to control group, 
yet the frequency of mMDSCs increased only 
in RA group. Due to the differences between 
total and mMDSC populations, further and more 
extensive studies of MDSC subpopulations should 
be conducted, distinguishing granulocytic CD15+ 
MDSCs and other subpopulations. Furthermore, 
larger sample sizes are required. Different factors 
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(prostaglandins, cyclooxygenase-2, interleukin 6, 
granulocyte-macrophage colony-stimulating factor, 
macrophage colony-stimulating factor, interferon 
gamma, transforming growth factor beta and 
tumor necrosis factor) are responsible for 
MDSC expansion, proliferation and inhibition of 
differentiation into mature cells.39-42 Assessment 
of serum factor levels of study patients might 
give us an insight as to why there is such a 
difference in MDSC distribution between these 
two autoimmune diseases (RA and pSS).

In conclusion, we have determined that the most 
prominent increase of both total and mMDSCs 
was evident in RA and sSS groups, which leads 
us to believe that MDSCs are associated with 
rheumatic processes. Furthermore, to the best of 
our knowledge, this is the first study to analyze 
the distribution of MDSCs in peripheral blood of 
pSS and sSS patients and to compare the results 
with RA.
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